Geometry (continued)

Geometry (coninued) Equations (G-GPE)
Translate between the geometric description and the equation of a conic section $(1,2)$derive the equation of a circle of given center and radius using the Pythagorean Theoremcomplete the square to find the center and radius of a circle given by an equation.Derive the equation of a parabola given a focus and directrix
Use coordinates to prove simple geometric theorems algebraically (4)
\square use coordinates to prove simple geometric theorems algebraically (such as a given figure defined by four coordinate points is a rectangle, etc.)
Geometric measurement and dimension (G-GMD)
Explain volume formulas and use them to solve problems (1, 3)give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit argumentsuse volume formulas for cylinders, pyramids, cones, and spheres to solve problems

Mathematics Practices

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision
7. Look for and make use of structure
8. Look for and express regularity in repeated reasoning.

Layout Design \& Collaboration
Janis Heigl janis@esnorthwest.com

Charlotte Hartman

 chartman@iinet.com
March 2016

Source Documents:
Based on Common Core Standards for Mathematics Adapted from Escondido Union High School District: "I Can" Statements

No part of this document may be reproduced without written permission from the authors.
For permission to reproduce please contact Educational Solutions Northwest.

Common Core

 Integrated Math IIGrade 10
Expectations Checklist

Geometry

Congruence (G-CO)
Prove geometric theorems $(9,10,11)$prove theorems about lines and angles
prove theorems about triangles
prove theorems about parallelograms
Similarity, Right Triangles, and Trigonometry (G-SRT)
Understand similarity in terms of similarity transformations (1a-b, 2, 3)
\square verify experimentally the properties of dilations given by a center and a scale factor:

* a dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
* the dilation of a line segment is longer or shorter in the ratio given by the scale factorgiven two figures, use the definition of similarity in terms of similarity transformations to decide if they are similaruse the properties of similarity transformations to establish he AA criterion for two triangles to be similar
Prove theorems using similarity $(4,5)$prove theorems about triangles
use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures
Define trigonometric ratios and solve problems involving right triangles $(6,7,8)$understand similarity in sides of right triangles which leads understand similarity in sides of right triangles which
to definitions of trigonometric ratios for acute anglesexplain and use the relationship between the sine and cosine of complementary anglesuse the Pythagorean Theorem to solve right triangles in applied problems

Circles (G-C)
Understand and apply theorems about circles (1, 2, 3, +4)prove that all circles are similaridentify and describe relationships among inscribed angles, radii, and chordsiang ine inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circleconstruct a tangent line from a point outside a given circle to the circle
Find arc lengths and areas of sectors of circles (5)
\square use congruence and similarity criteria for triangles to solve problems and prove relationships in geometric figures

My checklist of what I can do in Integrated Mathematics II - Grade 10

\square I understand that it is important to apply the mathematical practices (listed on fold-out section) on a regular basis.

Number and Quantity
The Real Number System (N-RN)
Extend the properties of exponents to rational exponents. $(1,2)$.explain and use definition and properties of rationa exponentsrewrite expressions involving radicals and rational exponents
Use properties of rational and irrational numbers (3)use properties of rational and irrational numbers
The Complex Number System (N-CN)
Perform arithmetic operations with complex numbers $(1,2)$
\square know there is a complex number i such that $i^{2}=-1$, and every complex number has the form $a+b i$ with a and b reause the relation $i^{2}=-1$ and the commutative, associative and distributive properties to add, subtract, and multiply complex numbers
Use complex numbers in polynomial identities and equations ($7,+8,+9$).
\square solve quadratic equations with real coefficients that havecomplex solutionsextend polynomial identities to the complex numbers
know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials

Algebra

Seeing Structure in Expressions (A-SSE) Interpret the structure of expressions (1a-b, 2).interpret parts of an expression such as terms, factors, and coefficients

\squareinterpret expressions by viewing one part as a single entity use the structure of an expression to identify ways to rewrite it Write expressions in equivalent forms to solve problems (3a-c).factor a quadratic expression to reveal the zeros of the function it definescomplete the square in a quadratic expression to reveal the maximum or minimum value of the function it definesuse the properties of exponents to transform expressions for exponential functions

Arithmetic with Polynomials and Rational Expressions (A-APR)
Perform arithmetic operations on polynomials (1).
\square understand that polynomials form a system that is closed under addition, subtraction, and multiplication
Creating Equations $\boldsymbol{*}$ (A-CED)
Create equations that describe numbers or relationships ($1,2,4$).create equations and inequalities in one variable and use them to solve problemscreate equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scalesrearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations
Reasoning with Equations and Inequalities (A-REI)
Solve equations and inequalities in one variable (4a-b)use completing the square to get a quadratic equation into the form $(x-p)^{2}=q$ and derive the quadratic formula from this formsolve quadratic equations by various methods as appropriate with the original equation; write complex solutions in a \pm bi form
Solve systems of equations (7).
$\square \begin{aligned} & \text { solve a simple system of linear and quadratic equations } \\ & \text { algebraically and graphically }\end{aligned}$

Functions

Interpreting Functions (F-IF)
interpret functions that arise in applications in terms of the context $(4,5,6)$
\square interpret key features of functions such as intercepts, extrema, intervals for increasing and decreasing, etc. in graphs and tablesrelate the domain of a function to its graph and quantitative relationship in contextcalculate and interpret the average rate of change of a symbolic methods

Analyze functions using different representations (7a-b, 8a-b, 9)graph linear and quadratic functions and show intercepts, maxima, and minimagraph square root, cube root, and piecewise-defined functions, including step functions and absolute value functionsuse factoring and completing the square in a quadratic functionuse the properties of exponents to interpret expressions for exponential functionscompare properties of two functions given differen representations
Building Functions (F-BF)
Build a function that models a relationship between two quantities (1a-b)
\square determine an explicit expression, a recursive process, or steps for calculation from a contextbuild new functions by combining standard function types using arithmetic operations
Build new functions from existing functions $(3,4 a)$identify the effect on the graph by replacing $f(x)$ with $f(x)+k$, $k f(x), f(k x)$, and $f(x+k)$ and find values of k given graphssolve an equation of the form $f(x)=c$ for a simple function that has an inverse and write an expression for the inverse

Linear, Quadratic, and Exponential Models $\boldsymbol{\star}$ (F-LE)
Construct and compare linear, quadratic, and exponential models and solve problems (3)
\square observe using graphs and tables that an exponentia function eventually exceeds linear, quadratic, or polynomia functions
Trigonometric Functions (F-TF)
Prove and apply trigonometric identities (8)
\square prove the Pythagorean identity $\sin 2(\theta)+\cos 2(\theta)=1$ and use it to find $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ given $\sin (\theta), \cos (\theta)$, o $\tan (\theta)$ and the quadrant of the angle

How to use checklist:

- Show the date of when you were able to do the math expectation.
- Show an example of what you did in a journal.

Statistics and Probability

Conditional Probability and Probability (S-CP)
(S-CP) Understand independence and conditional probability and use them to interpret data ($1,2,3,4,5$)
\square describe events as subsets of a sample space using characteristics of the outcomes, or as unions, intersections, or complements of other eventsunderstand that two events A and B are independent if and only if $P(A$ and $B)=P(A) P(B)$ and use to determine independenceunderstand and interpret independence of A and B as saying $\mathrm{P}(\mathrm{A})$ is the same as the conditional probability when A, B are independentconstruct and interpret two-way frequency tables of data; use the table as a sample space to decide independence and approximate conditional probabilitiesrecognize and explain the concepts of conditional probability and independence in everyday language and situations Use the rules of probability to compute probabilities of compound events in a uniform probability model (6, 7, +8, +9)find the conditional probability of A given B as the fraction of B's outcomes that also belong to A , and interpret answers in terms of the modelapply the Addition Rule $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$, and interpret the answer in terms of the modelpply the general Multiplication Rule in a uniformodel, $P(A$ and $B)=P(A) P(B \mid A)=P(B) P(A \mid B)$use permutations and combinations to compute probabilities of compound events and solve problems.

Using Probability to Make Decisions (S-MD)
Use probability to evaluate outcomes of decisions $(+)(6,7)$
\square Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).Analyze decisions and strategies using probability concepts

Geometry

Continued on fold-out section of this bookmark)

